Resonance Structures

Two valid Lewis structures can be drawn for the ion, $\mathrm{CH}_{2} \mathrm{COCH}_{3}{ }^{-}$

resonance structures

- Resonance structures:
- Lewis structures that differ only in the placement of electrons.

Resonance Structures

- $\mathrm{CH}_{2} \mathrm{COCH}_{3}{ }^{-}$exists as a resonance hybrid
- a substance that requires 2 or more resonance structures to adequately represent it
- properties of the substance are a blend of all possible resonance structures

Resonance Structures

The negative charge on $\mathrm{CH}_{2} \mathrm{COCH}_{3}{ }^{-}$is delocalized over both the carbon and oxygen.

- spread out over two or more atoms by resonance
- Charge delocalization makes $\mathrm{CH}_{2} \mathrm{COCH}_{3}{ }^{-}$ more stable.
- It is resonance stabilized because the charge can be spread out over 2 or more atoms.

Drawing Resonance Structures

- Rules for drawing resonance structures:
- All resonance structures must be valid Lewis structures
- Only electrons can be moved around - nuclei cannot be moved
- Resonance stabilization is most important when it helps delocalize a charge over two or more atoms

Are these resonance structures?

Resonance Structures

- To convert from one resonance structure to another:
- move nonbonding electrons or pi electrons towards either:
- a positive charge
- an adjacent pi bond
- a more electronegative atom
- Remember, the electrons move.
- The charge is delocalized (and moves to a new atom) as a result of the electrons moving.

Resonance Structures

Curved arrows are commonly used to show the movement of electrons when converting from one resonance structure to another.

- Arrow begins at the electron pair that is moving.

Resonance Structures

Example: Draw all possible major resonance structures for the following.

Resonance Structures

- The resonance structures for a particular substance sometimes have different energy and stability.
- Major contributor:
- the more stable resonance structure
- lower energy
- has the greatest influence on the properties and behavior of the resonance hybrid
- Minor contributor
- the less stable resonance structure
- higher energy

Resonance Structures

- A resonance hybrid most strongly resembles the lowest energy resonance structure (major contributor).
- Lewis structure of the major contributor is characterized by:
- as many octets as possible
- as many bonds as possible
- negative charge on the most electronegative atom
- as little charge separation as possible

Resonance Structures

Example: Consider the following two resonance structures for $\mathrm{CH}_{3} \mathrm{OCH}_{2}{ }^{+}$. Which one is the major contributor?

3-Dimensional Drawings

VSEPR can be used to determine the electron domain and molecular geometries around any main group atom.

- Draw the Lewis structure.
- Count the number of electron domains.
- Assign the geometry.
- 2 e.d. =
- 3 e.d. =
- 4 e.d. =

3-Dimensional Drawings

- You must also be able to draw an appropriate 3-dimensional structure for organic molecules.

Trigonal planar

tetrahedral

3-Dimensional Drawings

Example: Draw a 3-dimensional drawing of acrylic acid, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{H}$

3-Dimensional Drawings

Example: Draw a 3-dimensional structure for acetone.

Condensed Structural Formulas

- Condensed structural formula
- each central atom is shown with the atoms that are bonded to it
- atoms bonded to the central atom are usually listed after the central atom
- Put substituents in parentheses
- two or more identical groups are shown in parentheses with a subscript to indicate quantity
- the bonds between atoms are usually not shown
- exception: double and triple bonds between two carbons should be shown

Condensed Structural Formulas

Examples:

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{3}$

$\mathrm{CH}_{3} \mathrm{CHO}$

H BrHH
$\mathrm{CH}_{3} \mathrm{C}(\mathrm{Br})_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

Line Angle Drawings

- Line-angle formula or drawing
- bonds are represented by lines
- carbon atoms are present:
- where a line begins or ends (if no other atom is shown at the end of the line)
- where two lines meet
- Heteroatoms like N, O, S and halogen atoms are always shown.
- Aldehyde hydrogens are always shown.
- Other hydrogens are shown only if attached to an atom that has been drawn using its elemental symbol.

Line Angle Drawings

Examples:

Line Angle Drawings

- Line angle drawings are intended to show 3-d structure.
- Common errors:

incorrect

incorrect

correct

Alkynes are linear, not tetrahedral or trigonal planar.

Substituents on a tetrahedral C are ~109.5 ${ }^{\circ}$ apart, not 180° as this drawing shows.

Chemical Formulas

Example: Draw the condensed structural formula and the line angle drawing for:

Chemical Formulas

Example: Draw the condensed structural formula for

