Two valid Lewis structures can be drawn for the ion, CH₂COCH₃⁻

resonance structures

- Resonance structures:
 - Lewis structures that differ only in the placement of electrons.

- CH₂COCH₃⁻ exists as a resonance hybrid
 a substance that requires 2 or more resonance structures to adequately represent it
 - properties of the substance are a blend of all possible resonance structures

- The negative charge on CH₂COCH₃⁻ is delocalized over both the carbon and oxygen.
 - spread out over two or more atoms by resonance
- Charge delocalization makes CH₂COCH₃⁻ more stable.
 - It is resonance stabilized because the charge can be spread out over 2 or more atoms. $H = c = c \xrightarrow{0:}{} H \iff - c = c \xrightarrow{0:}{} H$

Drawing Resonance Structures

- Rules for drawing resonance structures:
 - All resonance structures must be valid Lewis structures
 - Only electrons can be moved around
 nuclei cannot be moved
 - Resonance stabilization is most important when it helps delocalize a charge over two or more atoms

Are these resonance structures?

- To convert from one resonance structure to another:
 - move nonbonding electrons or pi electrons towards either:
 - a positive charge
 - an adjacent pi bond
 - a more electronegative atom
- Remember, the electrons move.
 - The charge is delocalized (and moves to a new atom) as a result of the electrons moving.

- Curved arrows are commonly used to show the <u>movement of electrons</u> when converting from one resonance structure to another.
 - Arrow begins at the electron pair that is moving.

Example: Draw all possible major resonance structures for the following.

- The resonance structures for a particular substance sometimes have different energy and stability.
 - Major contributor:
 - the more stable resonance structure
 lower energy
 - has the greatest influence on the properties and behavior of the resonance hybrid
 - Minor contributor
 - the less stable resonance structure
 - higher energy

- A resonance hybrid most strongly resembles the lowest energy resonance structure (major contributor).
- Lewis structure of the major contributor is characterized by:
 - as many octets as possible
 - as many bonds as possible
 - negative charge on the most electronegative atom
 - as little charge separation as possible

Example: Consider the following two resonance structures for $CH_3OCH_2^+$. Which one is the major contributor?

3-Dimensional Drawings

- VSEPR can be used to determine the electron domain and molecular geometries around any main group atom.
 - Draw the Lewis structure.
 - Count the number of electron domains.
 - Assign the geometry.
 - 2 e.d. =
 - 3 e.d. =
 - 4 e.d. =

3-Dimensional Drawings

 You must also be able to draw an appropriate 3-dimensional structure for organic molecules.

3-Dimensional Drawings

Example: Draw a 3-dimensional drawing of acrylic acid, $H_2C=CHCO_2H$

Example: Draw a 3-dimensional structure for acetone.

Condensed Structural Formulas

- Condensed structural formula
 - each central atom is shown with the atoms that are bonded to it
 - atoms bonded to the central atom are usually listed after the central atom
 - Put substituents in parentheses
 - two or more identical groups are shown in parentheses with a subscript to indicate quantity
 - the bonds between atoms are usually not shown
 - exception: double and triple bonds between two carbons should be shown

Line Angle Drawings

- Line-angle formula or drawing
 - bonds are represented by lines
 - carbon atoms are present:
 - where a line begins or ends (if no other atom is shown at the end of the line)
 - where two lines meet
 - Heteroatoms like N, O, S and halogen atoms are always shown.
 - Aldehyde hydrogens are always shown.
 - Other hydrogens are shown only if attached to an atom that has been drawn using its elemental symbol.

Line Angle Drawings

- Line angle drawings are intended to show 3-d structure.
- Common errors:

Chemical Formulas

Example: Draw the condensed structural formula and the line angle drawing for:

$$\begin{array}{c} \mathsf{OH} \overset{\mathsf{H}}{\mathsf{O}} \\ \mathsf{H} & \overset{\mathsf{O}}{\mathsf{C}} - \overset{\mathsf{O}}{\mathsf{C}} - \overset{\mathsf{O}}{\mathsf{C}} - \mathsf{OH} \\ \mathsf{C} = \overset{\mathsf{O}}{\mathsf{C}} & \overset{\mathsf{H}}{\mathsf{H}} \\ \mathsf{H} & \overset{\mathsf{H}}{\mathsf{H}} \end{array}$$

$$\begin{array}{c} \mathsf{CH}_{3} & \mathsf{O} & \mathsf{H} \\ | & | & | \\ \mathsf{H} - \mathsf{C} = \mathsf{C} - \mathsf{C} - \mathsf{C} - \mathsf{C} - \mathsf{H} \\ | & | \\ \mathsf{CH}_{3} & \mathsf{H} \end{array}$$

Chemical Formulas

Example: Draw the condensed structural formula for

